共同研究


元東京大学大学院薬学系研究科 関水和久先生との共同研

Nature Chemical Biology 11,127-133 (2015) doi:10.1038/nchembio.1710

Artucle Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane

Abstract To obtain therapeutically effective new antibiotics, we first searched for bacterial culture supernatants with antimicrobial activity in vitro and then performed a secondary screening using the silkworm infection model. Through further purification of the in vivo activity, we obtained a compound with a previously uncharacterized structure and named it 'lysocin E'. Lysocin E interacted with menaquinone in the bacterial membrane to achieve its potent bactericidal activity, a mode of action distinct from that of any other known antibiotic, indicating that lysocin E comprises a new class of antibiotic. This is to our knowledge the first report of a direct interaction between a small chemical compound and menaquinone that leads to bacterial killing. Furthermore, lysocin E decreased the mortality of infected mice. To our knowledge, lysocin E is the first compound identified and purified by quantitative measurement of therapeutic effects in an invertebrate infection model that exhibits robust in vivoeffects in mammals.


秋田大学医学部附属病院 薬剤部 三浦昌朋教授との共同研究

Oncotarget, 2018, Vol. 9, (No. 38), pp: 25277-25284 Review Clinical implications of pharmacokinetics of sunitinib malate and N-desethylsunitinibplasmaconcentrationsfor treatment outcome inmetastatic renal cell carcinoma patients.

Abstract:In this study, we examined the association between the pharmacokinetics (PK)level of sunitinib malate (SU) and its metabolite N-desethyl-sunitinib (DSU) in terms of adverse events (AEs) and clinical outcomes in patients with metastatic renal cell carcinoma (mRCC). The PK of sunitinib (SU and DSU) was examined in 26 patients (20 men and 6 women) with mRCC. The associations between SU/DSU C0 and AE occurrence, best response rate, time to treatment failure, progression-free survival (PFS), and overall survival (OS) were investigated. Occurrence of grade 1 or higher hand-foot syndrome and thrombocytopenia (p = 0.002 and 0.024, respectively) was associated with a high concentration before morning intake (C0) level of SU. Low C0 levels of DSU were significantly associated with drug discontinuation due to disease progression (p = 0.035). Patients with DSU C0 level higher than 15.0 ng/mL showed a tendency toward increased PFS (61 weeks vs 12 weeks, p = 0.004) and OS (36 months vs 8 months, p = 0.040). The C0 level of SU and SU + DSU were not associated with prognosis. The higher level of C0 of SU may predict developing AEs and DSU C0 >15.0 ng/mL may lead to better prognosis of patients treated with sunitinib. PK of sunitinib may be useful for determining adequate dosages and prevention of severe AEs. Further studies are required to establish the utility of the PK of sunitinib in patients with mRCC.


秋田大学医学部附属病院 薬剤部 三浦昌朋教授との共同研究

Drug Metabolism and Pharmacokinetics 31(2016)12-20

Review Routine therapeutic drug monitoring of tyrosine kinase inhibitors by HPLC-UV or LC-MS/MS methods.

Abstract:Analytical methods using high performance liquid chromatography coupled to ultraviolet detection (HPLCeUV) or liquid chromatographyetandem mass spectrometry (LCeMS/MS) have been reported for the quantification of oral tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, and dasatinib in biological fluids. An LCeMS/MS method can simultaneously assay multiple TKIs and their metabolites with high sensitivity and selectivity for low plasma concentrations less than 1 ng/mL. For quantification of imatinib, nilotinib, and dasatinib, a limit of quantification (LOQ) of less than 10 ng/mL, 10 ng/mL, and 0.1 ng/mL, respectively, in the clinical setting is necessary. Because simpler and more cost-efficient methodology is desired for clinical analysis, plasma concentrations of imatinib and nilotinib (target trough concentrations of 1000 ng/mL and 800 ng/mL, respectively) could be assayed by an HPLCeUV method after comparison with results obtained from the standard LCeMS/MS method. However, in the quantification of dasatinib, the LCeMS/MS method that has high sensitivity and selectivity and is free from interference by endogenous impurities is superior to the HPLCeUV method. Highly precise analytical methods are needed for individualized treatment via dose adjustment of oral anticancer drugs, in particular those with low target plasma concentrations less than 10 ng/mL. Copyright © 2015, The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.


ーー 各種パッケージ ーー

PFAS(食品・飲料水・土壌など)

PFAS (食品・飲料水・土壌などの残留PFAS検査)

PFASで注目されている4種類(PFOS PFOA PFNA PFHxS)を検査します。

REGISTER(登録農薬)

REGISTER (生鮮食品毎の残留農薬検査)

国内農作物ごとに使用が認められている登録農薬が設定されています。
その設定されている農薬だけを農薬物ごとにパッケージ化しています。
マシスだけのオリジナルサービス。

FOODS(残留基準値設定農薬)

FOODS (生鮮食品毎の残留基準値設定農薬検査)

国内生鮮食品毎に残留農薬の基準値が設定されています。
その設定されている農薬だけを生鮮食品毎にパッケージ化しています。
マシスだけのオリジナルサービス。

GGAP/JGAP(GAP対応)

GGAP/JGAP (GGAP/JGAP対応食品別残留農薬検査)

GGAP・JGAP専用の200項目と300項目の2パッケージを用意しました。
必要に応じて項目を追加できます。
マシスだけのオリジナルサービス。

OP(生鮮食品特化)

OP (食品限定残留農薬検査)

生鮮食品に特化した農薬をコストパフォーマンス優先で選択したパッケージです。
マシスだけのオリジナルサービス。

IFM(輸入食品)

IFM&IFM-light (輸入食品残留農薬モニタリング検査)

輸入食品に対して検疫所が行う残留農薬のモニタリング検査と100%同じ項目をパッケージ化しています。
マシスだけのオリジナルサービス。

EFM(輸出食品)

EFM (輸出食品残留農薬モニタリング検査)

日本の輸出食品に対して相手国の検疫所が行う残留農薬のモニタリング検査を抜粋してパッケージ化しています。
マシスだけのオリジナルサービス。※国限定

FPp(農薬低価格Ver.)

FPp (残留農薬検査)

コストパフォーマンスが最も高いパッケージです。
各種試験品に対応しています。(生鮮・健康食品・加工食品・そのほか)
マシスだけのオリジナルサービス。

B(残留基準値まで測定)

B (残留農薬検査)

残留農薬基準値を定量限界に設定したコストパフォーマンスが高いパッケージです。
生鮮食品に特化したマシスだけのオリジナルサービス。

CW&MW(飲料水)

CW&MW (飲料水・ミネラルウォーターの残留農薬検査)

CWは、水質管理目標設定全項目をパッケージ化しています。
MWは、ミネラルウォーターの残留農薬基準が設定されている全項目をパッケージ化しています。
マシスだけのオリジナルサービス。

VD(動物用医薬品)

VD&VD-light (残留動物用医薬品モニタリング検査)

輸入食品に対して検疫所が行う動物医薬品のモニタリング検査と100%同じ項目をパッケージ化しています。
マシスだけのオリジナルアービス。

FPv(動物用医薬品低価格Ver.)

FPv (残留動物用医薬品検査)

コストパフォーマンスが最も高いパッケージです。
各種試験品に対応しています。(生鮮・健康食品・加工食品・そのほか)
(生鮮・健康食品・加工食品)マシスだけのオリジナルサービス。

PetFood(ペットフード)

PetFood (ペットフードの残留農薬検査ほか)

愛がん動物飼料の成分規格で定められている全19項目をパッケージ化しています。
マシスだけのオリジナルサービス。

Feed(飼料)

Feed (飼料の残留農薬検査)

農林水産省の飼料基準、管理基準で飼料毎に定められている項目を各飼料毎にパッケージ化しています。
マシスだけのオリジナルサービス。

Soil(土壌)

Soil (土壌の残留農薬検査)

土壌に残留性の高い農薬を選定して、パッケージ化しています。
マシスだけのオリジナルサービス。

- Sitemap -

パッケージ一覧 農薬・動物用医薬品・PFASなどの検査パッケージ一覧
PFAS 食品・飲料水・土壌などの残留PFAS検査
REGISTER 作物ごとに設定されている登録農薬検査
FOODS 生鮮食品毎の残留基準値設定農薬検査
GGAP/JGAP GGAP/JGAP対応食品別残留農薬検査
OP 生鮮作物限定残留農薬検査
IFM&IFM-light 輸入食品残留農薬モニタリング検査
EFM 輸出食品残留農薬モニタリング検査
FPp コストパフォーマンスが最も高い残留農薬検査
B 残留農薬基準値を定量限界に設定したコストパフォーマンスが高い残留農薬検査
CW&MW 飲料水・ミネラルウォーターの残留農薬検査
VD&VD-light 残留動物用医薬品モニタリング検査
FPv コストパフォーマンスが最も高い残留動物用医薬品検査
PetFood ペットフードの残留農薬検査ほか
Feed 飼料の残留農薬検査
Soil 土壌の残留農薬検査
   
栄養成分・他▶

基礎栄養成分  食品添加  食物繊維  脂質  金属・イオン  アミノ酸  ビタミン

核酸  有機酸  脂肪酸  アルコール  染料・色素  細菌

機能性成分・他▶ ポリフェノール  呈味  香料  香気  糖(単糖・多糖)
薬物・生薬▶

アンチエイジング  生薬  分子標的(抗がん剤)  高血圧  糖尿  肥満  その他の薬

薬の代謝物 ドーピング(食品)

毒・有害物質▶ 毒素(Toxin)  ステロイド  ホルモン  界面活性剤(洗剤)  有害物質
環境関連▶ 境(土壌・汚泥・河川水)  肥料  容器  包装  玩具  放射能
各種分析機器測定▶ 分析機器測定  分析法の開発(ISO/GMP対応)
   
Web見積り依頼▶ 見積依頼(全て)
分析検査依頼書▶ 食品の残留農薬  動物用医薬品・機能性成分など  人間以外の動物・爬虫類・魚類など
放射能検査依頼書▶ 放射能スクリーニング検査(NaI検出器)  放射能精密検査(Ge検出器)
検査依頼書▶
ISO/IEC 17025:2017
茶葉のポリフェノール  農薬
   
ご依頼までのフロー▶ 初めての方へ  ご依頼方法と流れ  業務契約
ご案内▶

ニュース  採用情報  会社概要  社屋の概要  会社沿革  プレリリース

共同研究  社会貢献   アクセス  ご利用条件  プライバシーポリシー

FQA▶

Q&A  ポジティブリスト制 分析結果証明書  検体(試験品)の必要量

報告方法と分析期間・お値引き・キャンセル  証明書の読み方  分析方法  データの取扱

フローチャート(残留農薬)分析に関する知識  分析用語  ワンポイントアドバイス

精度管理  国際認定(IS0/IEC 17025:2017) 情報リンク

   
認証及び登録▶

ISO/IEC 17025:2017認定試験所(認定番号:74760)  計量証明事業(青森県第73号濃度)

日本GAP協会推奨機関(残留農薬)  向精薬試験研究施設設置者登録(青森県第15号)

所属学会/協会▶ 日本分析化学会  日本食品衛生学会  日本血液学会  日本健康・栄養食品協会  日本GAP協会
   
Webお問合せ▶ 業務全般(業務提携・会社見学・分析法・開発など)
Mailお問合せ▶ info(at)masis.jp
電話お問合せ▶ 0172-29-1777

 

MASIS Top  Sitemap

2024 Copyright MASIS All Right Reserved.